skip to main content


Search for: All records

Creators/Authors contains: "Krause-Jensen, Dorte"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Phytoplankton and sea ice algae are traditionally considered to be the main primary producers in the Arctic Ocean. In this Perspective, we explore the importance of benthic primary producers (BPPs) encompassing microalgae, macroalgae, and seagrasses, which represent a poorly quantified source of Arctic marine primary production. Despite scarce observations, models predict that BPPs are widespread, colonizing ~3 million km2of the extensive Arctic coastal and shelf seas. Using a synthesis of published data and a novel model, we estimate that BPPs currently contribute ~77 Tg C y−1of primary production to the Arctic, equivalent to ~20 to 35% of annual phytoplankton production. Macroalgae contribute ~43 Tg C y−1, seagrasses contribute ~23 Tg C y−1, and microalgae-dominated shelf habitats contribute ~11 to 16 Tg C y−1. Since 2003, the Arctic seafloor area exposed to sunlight has increased by ~47,000 km2y−1, expanding the realm of BPPs in a warming Arctic. Increased macrophyte abundance and productivity is expected along Arctic coastlines with continued ocean warming and sea ice loss. However, microalgal benthic primary production has increased in only a few shelf regions despite substantial sea ice loss over the past 20 y, as higher solar irradiance in the ice-free ocean is counterbalanced by reduced water transparency. This suggests complex impacts of climate change on Arctic light availability and marine primary production. Despite significant knowledge gaps on Arctic BPPs, their widespread presence and obvious contribution to coastal and shelf ecosystem production call for further investigation and for their inclusion in Arctic ecosystem models and carbon budgets.

     
    more » « less
    Free, publicly-accessible full text available March 12, 2025
  2. Abstract

    Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha−1in the top 30 cm and 231 ± 134 Mg SOC ha−1in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024